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Introduction

A semi-annual progress report was submitted in January outlining the

results of permeation experiments after nitriding the inlet surface of a

hollow cylindrical membrane. In this report, permeation data on two addi-

tional specimens given pre-oxidation or pre-nitriding treatments at both inlet

and outlet surfaces are presented in terms of Arrhenius plots. Additionally,

an analysis of geometry dependence on permeation rate was made for several

specimens including the ones mentioned above. For simplicity in this report,

the term as-polished is used to refer to a specimen which is either as-polished

or is as-polished, pre-oxidized and annealed.

Experimental

Geometry Dependence

Permeation can be defined by

J = 2wtDC2 [tn(b/a)] -1  (1)

for the case where diffusion through the metal is slow and surface reactions

-1
are relatively fast (ref. 1). A plot of J versus [tn(b/a)] -1 is linear in such

a case. However, if the surface reactions are slow and diffusion through the

metal is relatively fast, the relationship is non-linear. In the latter case,

it is also expected that J would not necessarily be constant for a constant

value of the b/a ratio. For example, if the surface at a were more important

than b in controlling the rate, the permeation rate would be more sensitive to

change in a with b constant than it would be to change in b with a constant.

To observe how equation (1) would apply to the data, hydrogen flow rate

was plotted in terms of [Zn(b/a)]-l in Figure 1. The profile is non-linear,
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thus confirming that surface reactions are important during the transport

process in a-titanium. As expected for the case where surface reactions are

important, values of J appear to increasingly vary as [n(b/a)]-l increases

at a particular b/a ratio. For example, at [En(b/a)]l 1 = 7 the spread in

J x 108 (mol s-1) is about 13. At [in(b/a)]-1 = 9.0 the spread in J x 108

is about 31. Because of the limited number of specimens studied, it is impos-

sible to determine which surface predominates in controlling the hydrogen flow

rate. A systematic study of geometry dependence is planned using about 20

additional specimens.

Geometry dependence may also be characterized in a different way using

equation (2). Setting a constant in equation (1) and putting the resulting

equation in linear form:

/J =n(b) _n(a)
2TrDC2  2nZDC2

= Kn(b) - K' (2)

If permeation is diffusion controlled, equation (2) is linear just as it

would be in equation (1). However, if diffusion is not controlling, a plot

of l/J versus tn(b) is non-linear. At this point, equation (2) has no advantage

over equation (1) in the analysis unless a similar plot is made between J and

1/a where b is constant according to equation (3):

1/J = Kkn(l/a) + K" (3)

If the plot of equation (3) is less linear than equation (2), then the surface

at a is more important than the surface at b in controlling the rate and the

location of the important surface reaction is established. Due to a lack of

data on specimens of constant b/a ratios for various b and a values, an inter-

pretation based on equations (2) and (3) cannot be made at this time.

Another way that geometry dependence can be characterized is from Fick's

second law solution for hydrogen transport through hollow cylindrical membranes.
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Lag-time expressions have been developed for (1) diffusion controlled trans-

port, (2) phase boundary reaction control at the inlet surface, and (3) phase

boundary reaction control at the outlet surface (ref. 2). These expressions

yield lag-time equations of the general form:

1/tL = =D (4)

where (a) a is defined as aD (functional radii dependence for diffusion

control applies).

(b) a is defined as ea (functional radii dependence for inlet

surface control applies).

(c) a is defined as ab (functional radii dependence for outlet

surface control applies).

If equation (4) is valid for the properly selected value of =, a log-log plot

of 1/tL versus I/= yields a straight line of slope n = -1. The correct

functional value of = then identifies the predominant controlling mechanism

and its location. Again, an attempt was made to apply equation (4) but the

results were inconclusive because of the limited lag-time data available for

varying geometries.

Oxide Films

A modified form of Richard's equation is given by

J = KpH2 (0 < n 1) (5)

Taking the logarithm of both sides, a plot of log J versus log pH2 yields a

straight line of slope n where n = 1/2 for diffusion control and n = 1 for

surface reaction control. The effect of inlet surface pre-oxidation and pre-

nitriding on pressure dependence is shown in Figure 2. Comparison with the

as-polished condition shows both the decrease in permeation rate and the typical
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first power pressure dependence normally observed before pre-oxidation. Per-

meation rate is markedly influenced by the location of the oxide film. As

can be seen in Figure 3, oxide film at the outlet surface results in a permeation

rate increase, whereas at the inlet surface, pre-oxidation results in a permea-

tion rate decrease. In the latter case, activation energy increases relative

to the as-polished condition as illustrated on the Arrhenius plot in Figure 4.

Such an observation was observed on a different pre-oxidized specimen and was

reported on earlier (ref. 3). In Figure 4, a very thin oxide film (' 50A) on

the inlet surface is effective in reducing the rate whereas about the same

film on the outlet surface increases the rate. Above 500 - 6000C the permea-

tion rate decreases to the value it would have if the specimen had not been

pre-oxidized at the outlet surface. After annealing at about 7000C, the process

was repeated and the data reproduced.

As observed in both Figures 3 and 4, an increase in permeation rate was

observed after pre-oxidation at the outlet surface. The same observation is

noted in Figure 5, except that the permeation rate is slightly less for a

thicker oxide film at the outlet surface. Figures 5 and 6 show that first

power pressure dependency is maintained regardless of the pre-treatment.

Nitride Films

The permeation rate is much more sensitive to nitride film at the inlet

surface than it is at the outlet surface. Figure 7, presented earlier in the

semi-annual report, is an Arrhenius plot of the permeation rate through

progressively thicker nitride films on the inlet surface. As the film thick-

ness increases, the permeation rate decreases. Permeation is first power

dependent upon pressure as shown in both Figures 7 and 8. Very thin nitride

films (. 1-2A) at the inlet surface are effective in reducing the rate as

shown in Figure 8. Figures 9 and 10 represent two different sets of data
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that compare the effect of pre-nitriding at inlet and outlet surfaces. Pre-

nitriding at the outlet surface promotes only slight change in the rate.

Discussion

The decrease in permeation rate in the presence of oxide at the inlet

surface is consistent with an interpretation put forth that steady state is

established between gas-phase molecular hydrogen, a discontinuous layer of

TiH 2 and atomic hydrogen in the titanium lattice (ref. 4.) It is suggested

that this steady state condition is modified by oxygen in such a way that

partial filling of available chemisorbed sites by oxygen reduces the number

of sites available to hydride. Therefore, the actual concentration of hydrogen

in a-phase titanium is lower than it was for the case where the surface was

not pre-oxidized. While the process is surface controlled, this decrease in

concentration is equivalent to a reduced concentration gradient across the

membrane and a reduced hydrogen flow rate. Other information which adds

credibility to this explanation is noted in the literature. Caskey interprets

lack of hydride formation on titanium as due to the formation of a stable oxide

film (ref. 5). Reichardt comments on the inhibiting effect of contaminants on

reaction between hydrogen and titanium (ref. 6) and Schoenfelder and Swisher

account for their results in terms of the retarding effect of oxide films on

the rate of hydriding (ref. 7). Wasilewski and Kehl recognized the effect of

oxide on reaction rates in titanium in 1953 (ref. 8).

This interpretation of surface controlled permeation of hydrogen through

a-titanium is consistent with experimental observations assuming hydride forms

as an intermediate product at the inlet surface. This interpretation can be
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used to explain the permeation mechanism at the outlet surface if it is'assumed

that hydride forms at this location also. That this is a logical assumption

can be explained in terms of Barrer's interpretation of surface dependent

permeation (ref. 9). Since the actual concentration just inside the inlet

surface is below equilibrium, much of the hydrogen is removed by diffusion to

the outlet surface. At this surface, the slow rate of transfer across the

interface but relatively high diffusion rate through the solid leads to an

accumulation of hydrogen just inside the outlet surface. The actual concen-

tration is therefore greater than the equilibrium (zero) concentration ex-

pected at the outlet side in contact with vacuum. Thus, at the outlet surface,

it is logical to expect hydride formation and a permeation mechanism identical

to that described for the inlet surface. When the outlet surface is pre-

oxidized, the available sites for hydride decrease, and the concentration

just inside the outlet surface decreases just as it did at the inlet surface.

However, contrary to the decrease in the concentration gradient and equivalent

decrease in hydrogen flow rate after oxidation at the inlet surface, the

concentration gradient now increases and the equivalent result is an increase

in the hydrogen flow rate after oxidation at the outlet surface. The gradi-

ents (greatly magnified) for the three cases (1) Inlet oxidized (2) Outlet

oxidized and (3) As-polished are depicted in the following sketch:
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First power pressure dependence has been consistently observed regard-

less of pre-treatment, temperature or pressure. This suggests that the boundary

reactions at each surface are identical to what they are in the as-polished

condition and the only variable is the degree of surface coverage by hydride.

First power pressure dependence results, not because the process is surface

dependent, but because molecular hydrogen dissolves in the TiH 2 on a 1:1 basis.

This is equivalent to solution as molecular hydrogen for the purpose of this

discussion. The process is first power pressure dependent regardless of the

location of the surface treatment since in the above interpretation TiH 2

exists at both surfaces. It is quite possible that the controlling surface

switches from one surface to another depending upon the contaminant on the

surface and its relative thickness. As mentioned earlier, for example, oxide
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at the outlet is more effective than nitride in varying the rate whereas the

opposite is true at the inlet surface.

It is interesting to note that Smithells and Ransley observed differences

in the hydrogen permeation rate through aluminum depending upon which surface

was abraded (ref. 9). Abrasion of the outlet surface reduced the permeability

whereas abrasion of the inlet surface increased permeability.

,Conclusions

1. Pre-oxidation, pre-nitriding, and film thickness have no effect on the

usual dependence observed between permeation rate and first power of

pressure.

2. Irrespective of location, thicker oxide and nitride films reduce the

permeation rate.

3. Hydrogen flow rate is more sensitive to nitride film at the inlet surface

than the outlet surface whereas the opposite is true for oxide film.

4. Analysis of geometry dependence and effects of oxide-nitride films pro-

vides further evidence that permeation of hydrogen through a-titanium is

surface reaction controlled.

5. Nitrogen is more effective as a hydrogen "barrier" than oxygen under the

same conditions of pressure and temperature.

Nomenclature

J - Hydrogen flow rate or permeation rate

i - Reduced gage section length

C2 - Hydrogen concentration just inside inlet surface

b - Outlet radius

a - Inlet radius
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